Olfactory Circuits

Pattern recovery by recurrent circuits in piriform cortex.
Bolding KA, Nagappan S, Han, BX, Wang F & Franks KM. (2019) bioRxiv 10.1101/694331.

Recurrent cortical circuits implement concentration-invariant odor coding.
Bolding KA & Franks KM. (2018) Science 361: eaat6904.

A transformation from temporal to ensemble coding in a model of piriform cortex.
Stern M, Bolding KA, Abbott LF & Franks KM. (2018) eLife 10.7554/eLife.34831.

Learning: Plasticity without Stabilization in Olfactory Cortex.
Nagappan S & Franks KM. (2018) Curr. Biol28: R23-R25.

Complementary codes for odor identity and odor intensity in olfactory cortex.
Bolding KA & Franks KM. (2017) eLife 10.7554/eLife.22630.

Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex.
Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. (2017) eLife 10.7554/eLife.26337.

Massive normalization of olfactory bulb output in mice with a “monoclonal nose”.
Roland B, Jordan R, Sosulski DL, Diodato A, Fukunaga I, Wickersham I, Franks KM, Schaefer AT & Fleischmann A.  (2016)  eLife 10:7554/eLife.16335.

I Want It All and I Want It Now: How a Neural Circuit Encodes Odor with Speed and Accuracy.
Franks KM. (2015)  Neuron. 88: 852-4.

Multi-step signaling from sensory neurons onto olfactory bulb mitral cells. 
Gire DH*, Franks KM*, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, Hen R, Schoppa NE. (2012) J. Neurosci. 32: 2964-75.

Recurrent circuitry dynamically shapes the activation of piriform cortex.
Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel, R. (2011) . Neuron. 72: 49-56.

Mice with a "monoclonal nose": perturbations in an olfactory map impair odor discrimination.
Fleischmann A, Shykind BM, Sosulski DL, Franks KM, Glinka ME, Mei DF, Sun Y, Kirkland J, Mendelsohn M, Albers MW, Axel R. (2008)  Neuron. 60: 1068-81.

Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. 
Franks KM, Isaacson JS. (2006) Neuron. 49: 357-363.

Synapse specific downregulation of NMDA receptors by early experience: a critical period for plasticity of sensory input to olfactory cortex. 
Franks KM, Isaacson JS. (2005) Neuron. 47: 101-114.

* denotes equal authorship


Technology Development

Single-cell genetic transfection via in vivo whole-cell recording: bridging physiology, genetics and connectomics.
Rancz EA*, Franks KM*, Schwartz, M Schaefer AT, Seeburg P, Margrie TW. (2011)  Nature Neuroscience. 14: 527-532.


Older Publications

NGF is essential for hippocampal plasticity and learning.
Conner JM*, Franks KM*, Titterness AK*, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH. (2009)  J. Neurosci. 29: 10883-10889.

Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. 
Keller DK, Franks KM, Bartol TM, Sejnowski TJ. (2008) PLoS One. 3: e2045.

Independent sources of synaptic variability at single glutamatergic synapses. 
Franks KM, Stevens CF, Sejnowski TJ. (2003) J. Neurosci. 23: 3186-3195.

Complexity of calcium signaling in synaptic spines.
Franks KM, Sejnowski TJ. (2002)  Bioessays. 24: 1130-1144.

A Monte Carlo model reveals independent signaling at central glutamatergic synapses. 
Franks KM*, Bartol TM*, Sejnowski, TJ. (2002) Biophys J. 83: 2333-2348.

An MCell model of calcium dynamics and frequency-dependence of calmodulin activation in dendritic spines. 
Franks KM, Bartol TM, Sejnowski TJ. (2001). Neurocomputing. 38-40: 9-16.

Synaptic plasticity in morphologically identified CA1 Stratum Radiatum interneurons and projection cells.
Christie BR, Franks KM, Seamans JK, Saga K, Sejnowski, TJ. (2000).  Hippocampus. 10: 678-683.